

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 61 (2005) 1551-1562

λ^3 -Iodane-mediated arenol dearomatization. Synthesis of five-membered ring-containing analogues of the aquayamycin ABC tricyclic unit and novel access to the apoptosis inducer menadione

Nathalie Lebrasseur, Gao-Jun Fan, Mayalen Oxoby, Matthew A. Looney and Stéphane Quideau*

Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac Cedex, Laboratoire de Chimie des Substances Végétales, Centre de Recherche en Chimie Moléculaire, Université Bordeaux 1, 351 cours de la Libération, F-33405 Talence Cedex, France

Received 15 July 2004; revised 1 November 2004; accepted 25 November 2004

Available online 15 December 2004

Abstract—The λ^3 -iodane [bis(trifluoroacetoxy)]iodobenzene (BTI)-mediated oxidative dearomatization of 2-alkoxyarenols with soft external carbon-based nucleophiles constitutes a rapid access to highly functionalized naphthoid cyclohexa-2,4-dienones. These synthons can serve as valuable intermediates in the construction of the angularly-oxygenated benz[*a*]naphthalene ABC ring system of aquayamycinand SS-228Y-type antibiotic angucyclinones, and analogues thereof. This methodology led to the elaboration of five-membered A ringcontaining analogues of this ABC tricyclic unit. In addition, the BTI-mediated oxidative activation of 2-methylnaphthol can be exploited to prepare menadione (i.e. vitamin K₃), known to induce apoptosis and autoschizis, a novel type of cancer cell death. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Angucyclines and angucyclinones are structurally characterized by their benz[a]anthraquinone ABCD cyclic skeleton and constitute an important class of microbial antibiotics exhibiting a wide variety of biological activities, including antitumor, antifungal, and antiviral properties.^{1,2} The high structural diversity that these natural products feature, especially on their angular ABC ring system, gave impetus to many studies aimed at their total synthesis. Until now, most efforts have been directed toward angucyclinones in which the B ring is aromatic. In most cases, the strategy followed for constructing the benz[a]anthracene framework was based on Diels-Alder reactions.³⁻¹³ The repertoire of other approaches that have been examined encompass Michael-type cyclization,¹⁴ phthalide anion-based annulation,^{15,16} Friedel–Crafts reactions,^{17–19} chromium carbenoid-mediated benzannulation,²⁰ benzynefuran cycloaddition,²¹ metal-induced free radical annulation,²² cobalt-catalyzed [2+2+2] trivne cycloaddition² and biomimetic polyketide condensation reactions. 1,24,25 Despite this enormous amount of work, the synthesis of

angucyclinones bearing two hydroxy groups in a *cis*configuration at the AB ring junction (i.e. positions **4a** and **12b**), as exemplified by aquayamycin $(1)^{26,27}$ and SS-228Y $(2)^{28}$ remains a challenge for synthetic organic chemists. A further justification for tackling this challenge is found in the fact that most angucyclines or angucyclinones of this subclass display therapeutically-significant activities.^{29–35}

Only two relevant model studies have been reported,^{25,36} and two syntheses of angucyclinones of this subclass have been described; the first total synthesis of (+)-1, in more than 50 steps,^{37–39} and the synthesis of the racemic 8-deoxy analogue of WP 3688-2 (3).⁴⁰ In both cases, the key A ring annulation step relied on a biomimetic pinacolic-type coupling. Our previous investigation on the regioselective formation of naphthoid cyclohexa-2,4-dienones by oxidative dearomatization of naphthols using the λ^3 -iodane bis(trifluoroacetoxy)]iodobenzene (BTI) in the presence of soft carbon-based nucleophiles^{41,42} led us to examine a novel approach to the polycyclic core of aquayamycin-type angucyclinones (Scheme 1). The first key to the success of this approach resides in the use of either naphthoid or an anthranoid cyclohexa-2,4-dienone orthoquinol of type 5 that can be generated from the corresponding arenol 6 by the aforementioned BTI-mediated oxidative nucleophilic substitution reaction. In this event, the silvl enol ether 7b constitutes an ideal second reaction partner, since it adds a

Keywords: Angucyclines; Aquayamycin; Dearomatization; Cyclohexa-2,4-Dienones; λ^3 -Iodane.

^{*} Corresponding author. Tel.: +33 66 291 6551; fax: 33 54 000 6439; e-mail: s.quideau@iecb.u-bordeaux.fr

^{0040–4020/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.11.072

Scheme 1.

four-carbon appendage adequately functionalized for making the A ring in one step. We wish to report in full detail the work carried out so far on this orthoquinol route toward the synthesis of aquayamycin-type angucyclinones and model compounds thereof.

2. Results and Discussion

The first task to accomplish was to ascertain the possibility of generating an orthoquinol of type **5** using the silyl enol ether **7b** in our BTI-mediated arenol dearomatization reaction. We previously used a simpler and commercially available silyl enol ether (i.e. **7a**, 1-trimethylsilyloxybuta-1,3-diene) to prepare naphthoid orthoquinols, such as **5a**, in

good yields (Scheme 2).^{41,42} The diene **7b** has the advantage of bearing an additional methyl group prefiguring that of the aquayamycin-type A cycle. It was prepared in one step in 63% as the (E)-isomer from methyl-3-but-2-enal (8).⁴³ A mixture of 2-methoxynaphthol (6a, Z=H, R=Me, Scheme 1) and **7b** was then treated with BTI (1.8 equiv) in CH₂Cl₂ at 0 °C for 2 h to furnish both the orthoquinol **5b** and the naphthol 9b in moderate yields, together with the paraquinone 10^{44} (20%) and the iodoaryl compound 11 (2%) (Scheme 2). The desired and major orthoquinol product **5b** was obtained as a 1.3:1 mixture of the E and Zisomers; their assignment was determined by NOE spectroscopy that revealed a correlation between the aldehydic proton and the methyl group only for the Egeometry. We were much intrigued by the formation of 10 in such a significant yield (i.e. 20%), for this type of paraquinone was not obtained in previous reactions performed with 2-methoxy- and 2-benzyloxynaphth-1-ols in the presence of silvl enol ethers or allylsilane.^{41,42}

The only case in which we observed such an oxidative oxygenation was when we used 2-methylnaphth-1-ol (12). The treatment of this arenol with BTI led to the formation of menadione (17, i.e. vitamin K_3) as a bright yellow solid in an excellent yield of 80% (Scheme 3). Vitamin K₃, which displays the antihemorrhagic activity of the naturally occurring vitamin K, has also recently been found to induce cell death via apoptosis 45 and autoschizis, a new type of cancer cell death.⁴⁶ Vitamin K_3 is produced on industrial scale by stoichiometric oxidation of 2-methylnaphthalene with chromium trioxide in sulfuric acid,⁴⁷ but the environmental concerns linked to the use of chromium and the interesting pharmacological properties recently unveiled for this 1,4-naphthoquinone⁴⁵ encouraged the development of novel procedures of varying preparative values.⁴⁸⁻⁵¹ Although 2-methylnaphth-1-ol (12) is a more expensive starting material than 2-methylnaphthalene and CH₂Cl₂ is not the most appropriate solvent from an environmental point of view, the use of a λ^3 -iodane oxidizing agent such as BTI, nevertheless, constitutes an alternative preparation of vitamin K_3 (17). Several reports have described the use of λ^3 -iodanes in aqueous solvent systems to efficiently generate paraquinones from phenols,⁵²⁻⁵⁸ but, to the best of our knowledge, none were concerned with the preparation of 17.

17: R = Me \Rightarrow menadione (80%)

Scheme 3.

For the desired conversion of **6a** into **5b** (Scheme 2), we chose to use BTI to prevent any competing nucleophilic attack by the trifluoroacetate anion released during the reaction. This anion has a relatively low nucleophilic power and its participation in displacing the λ^3 -iodanyl unit of the initial ligand exchange product 13, either directly or by quenching an arenoxenium ion intermediate of type 14 (Scheme 3), was not expected to be a favored process in the presence of other nucleophilic species. Furthermore, special care was taken to ensure that the reaction was run under strictly anhydrous conditions to avoid any competitive substitution reaction with water. Hence, the possibility that the formation of **10** and **17** might be derived from the nucleophilic attack of the trifluoroacetate anion at the 4-position of 13 or 14 cannot be disregarded. The resulting trifluoroacetate esters of type 15 would then be hydrolysed during the aqueous workup and rapidly air oxidized during silica gel chromatography to furnish paraquinones 10 or 17 (Scheme 3). The attack of the trifluoroacetate anion onto 2-naphthol derivatives has previously been reported in special cases.⁵⁹ However, our experimental observations and NMR analyses of the crude products, which contain small amounts of paraquinones 10 or 17, do not allow us to confirm the formation of trifluoroacetate esters of type 15. Another possibility would be that the λ^3 -iodanyl conjugate base of 13 remains intact in significant amounts during the reaction and that their conversion into paraquinones 10 or 17 occurs via the attack of H₂O to give the hydroquinone intermediate 16 during the aqueous workup and silica gel chromatography (Scheme 3).

The only explanation we can propose for the minor formation of the iodoaryl compound 11 in the reaction between 6a and 7b (Scheme 2) is that iodobenzene released from BTI underwent an initial one-electron oxidation by excess BTI to generate a phenyl radical cation species, which was then quenched by the nucleophile 7b. The resulting radical intermediate could then be further oneelectron oxidized to furnish 11 after proton loss. Despite the decrease in chemical yield, chemo- and regioselectivity as compared to the results obtained using the simpler silvl enol ether 7a, we were nevertheless satisfied to have developed a rapid access to the highly functionalized orthoquinol 5b (Scheme 2) that we could subsequently use to investigate modes of cyclization onto the aquayamycin ABC ring system. Only the Z isomer of **5b** had a chance to cyclize into the desired angular polycycle.

First, we decided to examine the possibility of performing the same type of oxidative nucleophilic substitution reaction on an anthranoid derivative in order to build directly an aquayamycin BCD ring system appended by a four-carbon precursor of the A ring (Scheme 1). Using 2-alkoxy-1hydroxyanthraquinones as starting arenols, the first approach we tried to build such anthraquinones was that of Mitchell and Russell,^{15,60} which, involved a conjugated addition of the phtalide anion derived from 19 to nondimerizing orthoquinol acetates such as **18a/b** (Scheme 4).⁶¹ Unfortunately, the rapid rearomatizing departure of AcOH from the Michael-type adduct intermediate prevented the desired annulation into 21 to occur in situ, and led to the formation of phenols 20a/b. Several attempts to induce

LDA, LHMDS) failed.42 The solution came from annulating the B ring to a CD

cyclization into 21 by treating these phenols with a base (eg.

bicyclic unit via a cycloaddition process.^{62,63} The bromonaphthoquinone CD unit 22 was prepared in 97% yield over two steps from 1,5-dihydroxynaphthalene, as previously described,^{64,65} and was used as the dienophile in a Diels-Alder reaction with diene 23a (Schemes 4 and 5). We were particularly eager to carry out this reaction, for a C-glycosylated version of this dienophile bearing the aquayamycin D-olivose at the appropriate position has already been synthesized by Sulikowski and his coworkers.⁹ The silvl ketene acetal **23a** was prepared as a 2:1 mixture of geometric isomers in 74% yield over three steps from 1-cyano-2-propenylacetate **26**, as previously described (Scheme 5).^{62,66,67} Of particular note is the fact that it was crucial to maintain the reaction mixture at low temperature to avoid isomerization of **28a** to **29**.

The Diels-Ader reaction between 22 and 23a was first carried out at room temperature in toluene to afford, after

Scheme 5.

Scheme 4.

O 0 D OR 19 в `OAc Ó LDA, THF, -78 °C ĊN 20a: R = Me (65%) 18a: R = Me 20b: R = Bn (49%) 18b: R = Bn D С OH OR 22 ÓAc Ö toluene MeO rt → reflux OTMS 21 0 4Å sieves 23a (2.5 equiv) ÒMe MeO 0 OH ,OTMS Br OMe OMe С D в н 24 0 ÓR Ô OAc 25a: R = Ac (50%) without sieves \Rightarrow **25b**: R = H (54%)

Base:

silica gel flash chromatography, an undefined and unstable mixture that slowly (ca. 7 days) and completely evolved into the deacetylated anthraquinone $25b^{68}$ (Scheme 4). The mixture probably contained some anthraquinone 25b together with the initial cycloadduct 24 still in significant amounts, as suggested by the observation of a phenolic acetate group by NMR analysis. Furthermore, TLC analysis of this mixture did not show evidence of any formation of 25a. The elimination of HBr and concomitant aromatization of the B ring, possibly induced by a bromine-mediated cleavage of the acetal O-Si bond, occurred slowly upon standing, but the bromine anion then also mediated deacetylation via a nucleophilic addition-elimination at the carbonyl acetate carbonyl group. Attempts to carry out the reaction in the presence of a base (e.g. Et₃N, DBU) in order to promote elimination of HBr, while quenching it in situ, failed. The introduction of 4 A molecular sieves in the reaction medium brought to reflux after 1 h at room temperature solved this problem, and the desired anthraquinone 25a was thus obtained as an orange powder in 50% yield (Scheme 4). The role of the molecular sieves remains unknown, but they must in some way trap the bromine anion before it cleaves the acetate group. In any event, access to this novel 5-acetoxy-1-hydroxy-2-methoxyanthraquinone (25a) allowed us to proceed as planned to mount a fourcarbon tether at its 2-position. Unfortunately, the only product isolated after performing the BTI-mediated reaction between 25a and 7a in CH_2Cl_2 at various temperatures was the 1,4-dihydroxy compound 30 (Scheme 6). Again, this hydroxylation must have arisen either from an in situ attack of the trifluoroacetate anion released from BTI or from a λ^3 -iodanyl displacement by water during reaction processing (Scheme 3).

The use of fluorinated solvents such as 2,2,2-trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP), as first recommended by Kita and co-workers in place of CH₂Cl₂ for similar iodane-mediated reactions with phenolic compounds and their simple ethers,69-71 did not help and resulted only in complex reaction mixtures. Interestingly, the only product we could extract from these mixtures, albeit in a very low yield (i.e. 4%), was the anthranoid orthoquinone monoketal 31 that resulted from attack of TFE at the 2-position of 25a. Although TFE is recommended because of its low nucleophilicity, similar solvolyses have been observed in such a solvent.^{59,71} We then tried to augment the electrophilicity of the iodine(III) by adding a Lewis acid to the medium in the form of complexes of BTI or iodosylbenzene (PhIO) with BF₃ etherate, 70,72,73 as well as PhIO with HBF₄, 74,75 but no better formation of the desired C-C bond was observed. Another option was to reduce 25a into its corresponding dimethyl hydroquinone 32 before performing the BTI-mediated reaction. This was accomplished by reductive methylation of the benzyl ether of 25a. The difficulty of performing this preliminary benzylation, which necessitated the use of silver(I) oxide with benzyl bromide in refluxing CHCl₃ (Scheme 6), is probably due to the participation of the free phenol function of 25a in a hydrogen-bond with the adjacent carbonyl function. This lowering of the nucleophilic power of the phenolic oxygen, however, had no major effect on its reactivity towards the iodane reagent used, since the BTImediated hydration of 25a into 30 occurred in high yield (Scheme 6). Nevertheless, it is conceivable that the electron-withdrawing effect of the paraquinone motif of the ligand exchange reaction intermediate (e.g. A, Scheme 6) sufficiently disfavors any displacement of the iodanyl unit by soft carbon-based nucleophiles such as 7a

(path a), while augmenting its phenyliodonium **B** character (path b).

Reduction with sodium dithionite, methylation with dimethyl sulftate in aqueous potassium hydroxide and a final hydrogenolytic cleavage of the benzyl ether bond furnished the tetramethoxylated anthranol **32** (Scheme 6). Unfortunately, all attempts to promote the attack of the silyl enol ether **7a** onto **32** with BTI failed because of rapid oxidation of the dimethyl ether hydroquinone unit with concomitant displacement of a methyl group onto the free hydroxy group, giving rise to the formation of the anthraquinone **33**⁷⁶ in 48% yield (Scheme 6).

These recurring problems caused by the extreme sensitivity of the anthracene unit toward oxidation led us to envisage another approach to the benz[a]anthraquinone skeleton of angucyclinones. Since the BTI-mediated C-C bond-forming dearomatization of 2-alkoxynaphthols was successful (Scheme 2),^{41,42} we thought of first constructing a paraquinonic ABC ring system of type 35, on which the D ring would then be added by a Diels-Alder reaction with a C-glycosidic diene of type 34 (Scheme 7). With this in mind, the synthesis of the required naphthoquinone 36 was carried out also via a Diels-Alder reaction between the commercially available 1,4-benzoquinone 37 and 23, according to the method of Brassard and co-workers.⁶² Both the methoxylated 23a and the more labile methoxymethoxylated 23b were used in these reactions. In these cases, complete B ring aromatization was ensured before purification by stirring the crude cycloaddition product with SiO₂ in CH₂Cl₂ for 6 h (Scheme 7).⁶²

Before submitting **36a/b** to the BTI-mediated dearomatization reaction in the presence of **7b**, its phenolic group was silylated in the hope of improving the yield of the desired C–C bond forming reaction. Indeed, such silylations, in particular those using a tripropylsilyl group, have been proven beneficial in similar iodane-mediated transformations reported by Kita⁷⁷ and McKillop.⁷⁸ Although 2-methoxynaphthol **6a** was quantitatively converted into the corresponding tripropylsilyl phenyl ether **38** and to the orthoquinol methyl ether **5b**, albeit with no yield improvement, the tripropylsilylation of **36a** did not occur at the phenolic locus, but, surprisingly, at the C-7 center to furnish **39** (Scheme 8). Once again, we had to rely on more drastic conditions using silver(I) oxide and a smaller silylating

Scheme 8.

reagent to enable the reaction to occur at the phenolic function, the nucleophilicity of which was also lowered by its participation into an intramolecular hydrogen bond with the neighboring carbonyl group. Unfortunately, all attempts to dearomatize **40**, as well as the free phenol **36a**, with BTI into the desired orthoquinol in the presence of **7b** mainly gave back the staring material **36a**, plus up to 8% of the iodoaryl compound **11** as the only isolated compounds.

We thus decided to investigate the possibilities of converting the bicyclic orthoquinol ether **5b** into an angucyclinone ABC ring model system. The first tactic we examined for annulating its four-carbon enal unit onto the A ring part was a thiazolium ion-catalyzed benzoin-type coupling,^{79,80} but the heating of **5b** in absolute ethanol at 80 °C in the presence of 3-benzyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride (**41**) and triethylamine only gave **42**, after enal isomerization and aromatization of the thermally-induced Cope rearrangement product (Scheme 9).^{81–83} The cyanohydrin-based cyclisation approach reported by Kraus²⁵ for making similar ring systems was then tried. The cyanohydrin **43** was generated as a 1:1 diastereomeric mixture in a moderate yield of 37% by treating **5b** with trimethylsilyl

Scheme 9.

cyanide in the presence of catalytic amounts of KCN and 18-crown-6,^{84,85} but treatment of **43** with LDA in THF at -78 °C gave no cyclized product. In fact, the starting aldehydic orthoquinol ether **5b** was quantitatively recovered, probably via a mechanism involving an initial deprotonation at a γ -allylic position of the reacting tether (Scheme 9).

The last draw of this study led us to results of value for the synthesis of angucyclinone analogues. Since the presence of a double bond on the four-carbon tether allowed other reactions to compete with the desired cyclization, the alternative was to transform the enal unit of 5b into a β -hydroxyaldehyde before cyclization. Furthermore, such a transformation would convert both the (E)- and (Z)-enal tethers of the 1.3:1 product mixture **5b** into cyclizing motifs. Reductive opening of an α,β -epoxyaldehyde was the tactic chosen to elaborate the desired tertiary alcohol function. In the context of this study, we felt obliged to use the oxido- λ^3 -iodane reagent 45, recently reported by Ochiai and co-workers to epoxidize a, \beta-unsaturated carbonyl compounds.⁸⁶ Treatment of pure (E)-**5b** with **45** in THF at room temperature did not lead to the desired epoxide, but to the five-membered ring-containing tricycle 46 (32%), together with the starting **5b** (43%), now enriched in the (Z)-isomer (Scheme 10). The high nucleofugality of the λ^3 -aryliodanyl⁸⁷ group did not force the enolate intermediate 47 to follow the epoxidation path (route *c*), usually driven by reductive elimination at the iodine(III) center, and this enolate instead evolved through the intramolecular aldol reaction path (route a) and the isomerizing reversal of the initial Michael-type addition (route *b*).

Scheme 10.

We had to rely on a more classic methodology to prepare the required epoxide. Treatment of **5b** with H_2O_2/Na_2CO_3 in aqueous EtOH afforded the epoxyaldehyde **48** as a diastereomeric mixture in 60–65% yield (Scheme 11).⁸⁸ Various reaction conditions known to reduce regioselectively α,β -epoxyketones^{88–90} were then examined for opening the epoxide moiety of **48**.

Scheme 11.

The first conditions tried were those proposed by Miyashita and co-workers⁹⁰ by using a phenylseleno(triethyl)borate complex to initiate epoxide opening by a one-electron reduction of the aldehydic carbonyl. These conditions are known to preclude dehydration of the resulting β-hydroxycarbonyl product.⁹⁰ Opening of the epoxide was indeed successful, but the boron enolate intermediate 49 generated under these conditions, like enolate 47, quickly followed the intramolecular aldol reaction path before being quenched during workup. The five-membered ring-containing tricycle 50 was thus obtained in 46% yield, together with the related epoxide 51 in 35% yield, the formation of which remains unclear (Scheme 11). Stereochemical assignments of 50 were deduced from the observation of strong NOE signals between the two hydroxyl hydrogens. Reduction of 48 using zinc in aqueous EtOH containing ammonium chloride⁸ gave the dehydrated analogue 46 in 14% yield. Samarium diiodide reduction in THF in the presence of MeOH as a proton source⁸⁹ furnished only traces of **50** and **46** in 14% yield (Scheme 11). Although these epoxide-opening reactions did not lead to the formation of a six-membered A ring, the five-membered ring cyclization path they unveiled constitutes a valuable approach for the synthesis of aquayamycin-type angucyclinone analogues. In particular, the use of Miyashita's selenoborate complex on an orthoquinol epoxide such as 48 affords two related angularly oxygenated tricyclic analogues (i.e. 50 and 51) of the aquayamycin ABC ring system in good yields.

In conclusion, the synthesis studies described here in full details on the orthoquinol route to aquayamycin-type angucyclinones and related compounds led to a novel and convenient access to five-membered ring-containing analogues of their ABC tricylic system. This work has confirmed the value of λ^3 -iodane-mediated arenol dearmotization reactions for the direct elaboration of highly functionalized synthetic intermediates. We are actively

pursuing our efforts with the aim of fully synthesizing fivemembered ring-containing analogues of aquayamycin, while investigating other transformations of orthoquinols of type **48** into benz[*a*]naphthoquinones en route to aquayamycin. Furthermore, the use of the λ^3 -iodane BTI reagent for dearomatizing arenols allowed us to propose a novel and rapid preparation of the apoptosis inducer menadione (i.e. vitamine K₃).

3. Experimental

3.1. General

Tetrahydrofuran (THF) and diethyl ether (Et₂O) were purified by distillation from sodium/benzophenone under N₂ immediately before use. CH₂Cl₂ was distilled from CaH₂. Light petroleum refers to the 40–60 °C boiling range. Moisture and oxygen sensitive reactions were carried out in flame-dried glassware under N2. Evaporations were conducted under reduced pressure at temperatures less than 45 °C unless otherwise noted. Column chromatography was carried out under positive pressure using $40-63 \,\mu\text{m}$ silica gel (Merck). Preparative layer chromatography (PLC) was performed using glass-coated silica gel plates (SILG-100 UV 254, Macherey-Nagel). Melting points are uncorrected. NMR spectra of samples in the indicated solvent were run at 200, 250 or 300 MHz. Carbon multiplicities were determined by DEPT135 experiments. Diagnostic bond connectivities and stereochemical assignments were obtained by two-dimensional HMQC, HMBC and NOESY experiments run on Bruker 200- and 400-DPX spectrometers. Electron impact mass spectra (EIMS) were obtained at 50-70 eV. Low and high resolution electron impact and liquid secondary ion mass spectrometry data (EIMS, and LSIMS, HRMS) were obtained from the mass spectrometry laboratory at the CESAMO, Université Bordeaux 1.

3.1.1. Bis(trifluoroacetoxy)]iodobenzene-mediated transformation of 2-methoxynaphthol (6a) in the presence of 1-trimethylsilyloxy-3-methylbuta-1,3-diene (7b). To a stirring ice-cold solution of 6a (1.0 g, 5.7 mmol)⁴² and 7b (2.6 g, 16.6 mmol)⁴³ in CH₂Cl₂ (17 mL) was added BTI (4.4 g, 10.2 mmol) as a solid, in one portion. The mixture was stirred at rt for 2 h, after which time it was diluted with CH₂Cl₂ (20 mL), washed with saturated aqueous NaHCO₃ (2×20 mL), 1M H₃PO₄ (20 mL), brine (20 mL), dried over Na₂SO₄, and evaporated at rt. The resulting brownish oil was purified by column chromatography, eluting with light petroleum/Et₂O (1:1), to furnish a 1.3:1 mixture *E/Z* **mixture of 5b** (532 mg, 36%) as a red oil, **9b** (192 mg, 13%) as a pale yellow gum, **10** (216 mg, 20%) as a yellow solid and **11** (32.8 mg, 2%) as a brownish oil.

3.1.2. 1,2-Dihydro-2-(3-formylprop-2-enyl)-2-methoxy-1-oxonaphthalene (**5b**). (*E*)-**5b**: IR (KBr) 2938, 1670, 1596, 1120 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 2.20 (s, 3H, β -CH₃), 2.57 (s, 2H, γ -CH₂), 3.16 (s, 3H, OCH₃), 5.74 (d, *J*=8.0 Hz, 1H, H- α), 6.08 (d, *J*=10.1 Hz, 1H, H-3), 6.76 (d, *J*=10.1 Hz, 1H, H-4), 7.23 (dd, *J*=1.2, 7.6 Hz, 1H, H-5), 7.37 (m, 1H, H-7), 7.58 (m, 1H, H-6), 7.98 (m, 1H, H-8), 9.89 (d, *J*=8.0 Hz, 1H, CHO); ¹³C NMR (CDCl₃, 62.9 MHz) δ 199.5, 190.8, 157.8, 136.9, 135.3, 134.8, 131.3, 129.8, 129.6, 128.7, 127.9, 127.2, 82.3, 53.7, 49.6, 19.7. (*Z*)-**5b**: ¹H NMR (CDCl₂, 300 MHz) δ 1.93 (s. 3H, β-CH₂), 2,79

5b: ¹H NMR (CDCl₃, 300 MHz) δ 1.93 (s, 3H, β-CH₃), 2.79 (d, J=13.2 Hz, 1H, γ-CH₂), 2.91 (d, J=13.2 Hz, 1H, γ-CH₂), 3.09 (s, 3H, OCH₃), 5.69 (d, J=7.9 Hz, 1H, H-α), 6.02 (d, J=9.8 Hz, 1H, H-3), 6.71 (d, J=9.8 Hz, 1H, H-4), 7.17 (m, 1H, H-5), 7.30 (m, 1H, H-7), 7.52 (m, 1H, H-4), 7.92 (d, J=7.5 Hz, 1H, H-8), 9.61 (d, J=7.9 Hz, 1H, CHO); ¹³C NMR (CDCl₃, 75.5 MHz) δ 199.4, 190.7, 156.8, 136.7, 135.3, 134.8, 131.3, 129.7, 129.5, 128.7, 127.9, 127.1, 82.0, 53.7, 41.3, 27.7. LSIMS *m*/*z* (rel intensity) 279 (MNa⁺, 58), 257 (MH⁺, 41), 256 (M⁺, 35), 225 (59); HMRS (LSIMS) calcd for C₁₆H₁₆O₃ 256.1099, found 256.1091.

3.1.3. 4-(*E***-3-Formylprop-2-enyl)-2-methoxynaphthol** (**9b**). IR (KBr) 3292, 1649 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 2.20 (s, 3H), 3.88 (s, 2H), 3.94 (s, 3H), 5.75 (br d, *J*=8.1 Hz, 1H), 6.20 (s, 1H), 7.07 (s, 1H), 7.41 (m, 2H), 7.73 (d, *J*=8.1 Hz, 1H), 8.20 (d, *J*=7.9 Hz, 1H), 9.98 (d, *J*=8.0 Hz, 1H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 191.4, 162.9, 140.6, 139.4, 131.9, 128.3, 127.9, 125.4, 124.8, 124.6, 123.6, 122.0, 115.6, 57.3, 43.7, 17.8; LSIMS *m/z* (rel intensity) 279 (MNa⁺, 18), 256 (M⁺, 100); HMRS (LSIMS) calcd for C₁₆H₁₆O₃ 256.1099, found 256.1098.

3.1.4. 2-Methoxy-1,4-naphthoquinone (10).⁴⁴ IR (NaCl) 1685, 1651 cm⁻¹; 1H NMR (CDCl₃, 250 MHz) δ 3.91 (s, 3H), 6.18 (s, 1H), 7.71–7.76 (m, 2H), 8.07–8.15 (m, 2H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 184.8, 180.1, 160.4, 133.3, 132.0, 131.0, 126.1, 109.8, 56.4; EIMS *m/z* (rel intensity) 188 (M⁺, 100), 174 (40); HMRS (EIMS) calcd for C₁₁H₈O₃ 188.0473, found 188.0471.

3.1.5. 4-(4-Iodophenyl)-3-methyl-but-2-enal (**11).** IR (NaCl) 1670 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.10 (s, 3H), 3.42 (s, 2H), 5.84 (d, *J*=7.9 Hz, 1H), 6.90 (d, *J*= 6.8 Hz, 2H), 7.62 (q, *J*=6.8 Hz, 2H), 9.97 (d, *J*=7.9 Hz, 1H), ¹³C NMR (CDCl₃, 75.5 MHz) δ 191.1, 161.2, 137.7, 136.5, 131.1, 128.6, 92.3, 46.2, 17.3; EIMS *m/z* (rel intensity) 286 (M⁺, 35), 159 (100); HMRS (EIMS) calcd for C₁₁H₁₁OI 285.9855, found 285.9851.

3.1.6. 2-Methyl-1,4-naphthoquinone (17, menadione). To a stirring ice-cold solution of 2-methylnaphthol 12 (100 mg, 0.63 mmol) in CH₂Cl₂ (5 mL) was added dropwise a solution of BTI (408 mg, 0.95 mmol) in CH₂Cl₂ (5 mL). The mixture was stirred at rt for 45 min, after which time it was diluted with CH₂Cl₂ (20 mL), washed with saturated aqueous NaHCO₃ (2×20 mL), 1M H₃PO₄ (20 mL), brine (20 mL), dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography, eluting with light petroleum/Et₂O (1:1), to furnish 17 (87 mg, 80%) as a bright yellow solid: mp 103–104 °C; IR (KBr) 1664 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 2.17 (d, J = 1.5 Hz, 3H), 6.82 (q, J=1.5 Hz, 1H), 7.7–7.8 (m, 2H), 8.0–8.1 (m, 3H); ¹³C NMR (CDCl₃, 50.3 MHz) δ 185.6, 185.0, 148.2, 135.7, 133.6, 133.6, 132.3, 132.2, 126.5, 126.1, 16.5; EIMS m/z (rel intensity) 172 (M⁺, 100).

3.1.7. 5-Acetoxy-1-hydroxy-2-methoxyanthraquinone (**25a**). To a stirring solution of 2-bromo-5-acetoxynaphthoquinone **22** (666 mg, 2.26 mmol)^{64,65} in toluene (7 mL) was added dropwise a solution of 1,2-dimethoxy-1-trimethylsilyloxy-1,3-butadiene **23a** (1.14 g, 5.64 mmol)⁶² in toluene (3 mL). The mixture was stirred in the presence of 4 Å molecular sieves at rt for 1 h and then heat to reflux overnight. The residue was evaporated, dissolved in CH₂Cl₂, adsorbed on silica gel and purified by column chromatography, eluting with EtOAc/hexane $[(1:2) \rightarrow$ (1:1)], to afford 25a (354 mg, 50%) as an orange powder, which was crystallized from EtOAc/hexane: mp 180-181 °C; IR (KBr) 3420, 1759, 1661, 1637, 1590 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 2.49 (s, 3H), 4.01 (s, 3H), 7.17 (d, J=8.5 Hz, 1H), 7.43 (dd, J=1.2, 7.9 Hz, 1H), 7.79 (t, J=7.9 Hz, 1H), 7.79 (d, J=8.5 Hz, 1H), 8.30 (dd, J=1.2, 7.9 Hz, 1H), 12.88 (s, 1H); ¹³C NMR (CDCl₃, 50.3 MHz) δ 188.2, 180.1, 169.5, 153.6, 152.4, 150.4, 135.1, 134.5, 130.6, 125.8, 125.4, 125.3, 121.0, 116.1, 115.5, 56.3, 21.1; LSIMS *m*/*z* (rel intensity) 335 (MNa⁺, 3), 313 (MH⁺, 36), 312 (M⁺, 5), 271 (100); HMRS (LSIMS) calcd for C₁₇H₁₃O₆ 313.0712, found 313.0704.

3.1.8. 1,5-Dihydroxy-2-methoxyanthraquinone (25b).⁶⁸ To a stirring solution of 2-bromo-5-acetoxynaphthoquinone **22** (509 mg, 1.73 mmol)^{64,65} in toluene (6 mL) was added dropwise a solution of 1,2-dimethoxy-1-trimethylsilyloxy-1,3-butadiene 23a $(700 \text{ mg}, 3.46 \text{ mmol})^{62}$ in toluene (3 mL). The mixture was stirred at rt for 4 days. The residue was evaporated, dissolved in CH₂Cl₂, adsorbed on silica gel and purified by column chromatography, eluting with Et₂O/hexane (1:1), to afford **25b** (290 mg, 54%) as orange needles after crystallization from EtOAc/hexane: mp 227 °C; IR (KBr) 3464, 1624 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 4.03 (s, 3H), 7.16 (d, J = 8.4 Hz, 1H), 7.30 (dd, J=1.1, 8.4 Hz, 1H), 7.65 (t, J=8.4 Hz, 1H), 7.83 (dd, J=1.1, 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 12.84 (s, 1H), 13.07 (s, 1H); ¹³C NMR (CDCl₃, 50.3 MHz) δ 188.4, 187.0, 162.7, 154.5, 153.1, 136.2, 133.3, 125.0, 124.8, 121.0, 119.2, 116.3, 115.9, 115.6, 56.4; EIMS *m/z* (rel intensity) 271 (MH⁺, 18), 270 (M⁺, 100); HMRS (EIMS) calcd for C₁₅H₁₀O₅ 270.0528, found 270.0518.

3.1.9. Methyl 2-methoxymethyl-3-butenoate (28b). To a stirred solution of methyl 2-hydroxy-3-butenoate (2 g, 17.2 mmol) in THF (25 mL) was added dropwise at 0 °C diisopropylethylamine (6.6 mL, 32.8 mmol) and chloromethylmethylether (3.9 mL, 51.6 mmol). The mixture was allowed to warm up to rt and stirred for 6 days, after which time it was diluted with Et₂O (40 mL), washed with 0.1 M HCl (30 mL), saturated aqueous NaHCO₃ (30 mL), brine (30 mL), dried over Na₂SO₄, and evaporated to afford a colorless oil (2.2 g, 80%), which was used without any further purification: IR (NaCl) 2964, 2900, 2830, 1762 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.4 (s, 3H), 3.75 (s, 3H), 4.64 (d, J=6.4 Hz, 1H), 4.70 (s, 2H), 5.32 (d, J=10.6 Hz, 1H),5.46 (d, J = 17.9 Hz, 1H), 5.82–5.94 (m, 1H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 170.9, 132.3, 119.1, 95.0, 75.7, 55.8, 52.9; EIMS *m*/*z* (rel intensity) 160 (M⁺, 0.5), 101 (24), 45 (100); HMRS (EIMS) calcd for C₇H₁₂O₄ 160.0735, found 160.0738.

3.1.10. 5-Acetoxy-1,4-dihydroxy-2-methoxyanthraquinone (30). To a stirring ice-cold solution of BTI (76 mg, 0.18 mmol) in dry CH_2Cl_2 (3 mL) was added dropwise a solution of 1-hydroxy-2-methoxy-5-acetoxyanthraquinone (**25a**) (50 mg, 0.16 mmol) in dry CH_2Cl_2 (2 mL) and diene **7a** (56 μ L, 0.32 mmol). After 3 h at rt, the mixture was diluted with CH₂Cl₂ (20 mL), washed with saturated aqueous NaHCO₃ (10 mL), 1M H₃PO₄ (10 mL), brine (10 mL), dried over Na₂SO₄, filtered, and evaporated at rt. The residue was purified by column chromatography, eluting with hexane/EtOAc [(4:1) \rightarrow (2:1)], to afford **30** (40 mg, 76%) as red needles. The same result was obtained without allyltrimethylsilane. **30**: mp 176–177 °C; IR (KBr) 3442, 1763, 1614, 1587 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 2.47 (s, 3H), 4.00 (s, 3H), 6.70 (s, 1H), 7.44 (dd, *J*=1.5, 7.9 Hz, 1H), 7.81 (t, *J*=7.9 Hz, 1H), 8.34 (dd, *J*=1.5, 7.9 Hz, 1H), 13.43 (s, 1H), 13.43 (s, 1H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 186.3, 183.8, 169.7, 161.1, 157.4, 150.6, 150.2, 135.1, 134.6, 130.5, 125.6, 125.4, 112.0, 107.4, 106.6, 56.6, 21.2; EIMS *m/z* (rel intensity) 328 (MH⁺, 28); HMRS (LSIMS) calcd for C₁₇H₁₂O₇ 328.0583, found 328.0572.

3.1.11. 5-Acetoxy-1,6-dihydro-6-methoxy-6-(2,2,2-trifluoroethoxy)-1-oxoanthraquinone (31). To a stirring ice-cold solution of BTI (90 mg, 0.21 mmol) in CF₃CH₂OH (3 mL) was added dropwise a solution of 5-acetoxy-1hydroxy-2-methoxyanthraquinone (25a)(60 mg)0.19 mmol) in dry CF₃CH₂OH (2 mL). After 2 min, the diene 7a (47 µL, 0.27 mmol) was added dropwise. After 30 min, an another portion of diene 7a (47 µL, 0.27 mmol) was added dropwise. After 1 h at rt, the mixture was diluted with CH₂Cl₂ (20 mL), washed with saturated aqueous NaHCO₃ (10 mL), 1M H₃PO₄ (10 mL), brine (10 mL), dried over Na₂SO₄, filtered, and evaporated. The residue was purified by column chromatography, eluting with hexane/EtOAc (2:1), to afford 31 (3 mg, 4%): IR (NaCl) 1759, 1715, 1687 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 2.38 (s, 3H), 3.36 (s, 3H), 3.86–4.01 (m, 2H), 6.00 (d, J =10.3 Hz, 1H), 6.24 (d, J=10.3 Hz, 1H), 7.35 (d, J=7.9 Hz, 1H), 7.68 (d, J=7.9 Hz, 1H), 7.95 (d, J=7.9 Hz, 1H); LSIMS *m*/*z* (rel intensity) 433 (MNa⁺, 85), 411 (MH⁺, 30).

3.1.12. 2,5,9,10-Tetramethoxyanthracenol (32). A mixture of **25a** (173 mg, 0.55 mmol), Ag₂O (514 mg, 2.22 mmol) and benzyl bromide (196 µL, 1.65 mmol) in CHCl₃ (8 mL) was heat to reflux for 4 h. The mixture was cooled down to rt, filtered through Celite and evaporated. The residue was submitted to column chromatography, eluting with CH₂Cl₂/Et₂O (50:1), to give 5-acetoxy-1benzyloxy-2-methoxy-anthraquinone (150 mg, 68%): mp 146.7–147.4 °C; IR (KBr) 1759, 1675 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 2.48 (s, 3H), 3.92 (s, 3H), 5.11 (s, 2H), 7.21 (d, J = 8.8 Hz, 1H), 7.33–7.45 (m, 4H), 7.66 (dd, J =1.5, 7.9 Hz, 2H), 7.73 (t, J=7.9 Hz, 1H), 8.04 (d, J=8.5 Hz, 1H), 8.20 (dd, J=1.5, 7.9 Hz, 1H); ¹³C NMR (CDCl₃, 62.9 MHz) & 181.7, 180.9, 169.5, 158.8, 149.5, 147.5, 137.0, 136.8, 134.4, 129.0, 128.6, 128.2, 128.0, 127.7, 126.6, 125.6, 125.2, 124.2, 116.1, 75.0, 56.1, 21.1; EIMS m/z (rel intensity) 402 (M⁺, 6), 91 (Bn⁺, 100); HMRS (EIMS) calcd for $C_{24}H_{18}O_6$ 402.1103, found 402.1107.

To a strirred solution of this anthraquinone in THF (6 mL) and H_2O (2.5 mL) were added *n*-Bu₄NBr (35 mg, 5%) and $Na_2S_2O_4$ (4×555 mg, 12.75 mmol) portionwise over 1 h. The mixture was then treated with aqueous KOH (3.5 mL, 42.5 mmol) and stirred for 15 min, after which time Me₂SO₄ (4 mL, 42.5 mmol) was added dropwise. The reaction mixture was stirred at rt overnight. It was then diluted in

 CH_2Cl_2 (20 mL) and quenched with H_2O (50 mL). The aqueous phase was extracted with CH_2Cl_2 (3×40 mL). The combined organic layers were washed with brine (80 mL), dried over Na₂SO₄, and evaporated. The crude mixture was purified by column chromatography, eluting with hexane/EtOAc [(5:1) \rightarrow (1:1)], to give 1-benzyloxy-2,5,9,10tetramethoxyanthracene (303 mg, 35%): mp 130-131 °C; IR (KBr) 2931, 2831 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 3.95 (s, 3H), 4.01 (s, 3H), 4.02 (s, 3H), 4.08 (s, 3H), 5.08 (s, 2H), 6.74 (d, J=7.6 Hz, 1H), 7.32–7.48 (m, 5H), 7.68 (m, 2H), 8.12 (d, J = 8.9 Hz, 1H), 8.27 (dd, J = 1.9, 9.6 Hz, 1H); ¹³C NMR (CDCl₃, 50.3 MHz) δ 156.2, 149.6, 149.2, 146.4, 140.3, 138.1, 129.0, 128.8, 128.2, 127.7, 125.3, 124.2, 121.8, 120.7, 116.8, 115.5, 115.1, 103.1, 76.6, 63.4, 63.3, 57.0, 56.0; LSIMS *m*/*z* (rel intensity) 404 (M⁺, 33), 405 (MH⁺, 17), 313 (M-Bn⁺, 100); HMRS (LSIMS) calcd for C₂₅H₂₄O₅ 404.1624, found 404.1618.

A solution of this anthracene (238 mg, 0.70 mmol) in THF (23 mL) was stirred for 24 h in the presence of 10% wt Pd-C (87 mg) under an atmosphere of hydrogen. This mixture was filtered through Celite, and evaporated to give a residue, which was purified by column chromatography, eluting with hexane/EtOAc (4:1), to give **32** (67 mg, 30%): mp 134 °C; IR (KBr) 3341, 2934, 2838 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 3.99 (s, 3H), 4.05–4.07 (m, 9H), 6.70 (d, *J*= 7.6 Hz, 1H), 7.26–7.39 (m, 2H), 7.72 (d, *J*=8.9 Hz, 1H), 7.94 (d, *J*=9.6 Hz, 1H), 9.56 (s, 1H); ¹³C NMR (CDCl₃, 50.3 MHz) δ 156.4, 149.8, 145.2, 141.7, 139.5, 126.3, 125.6, 123.5, 117.1, 116.8, 116.4, 114.8, 113.5, 102.9, 63.7, 63.3, 57.2, 56.0; LSIMS *m/z* (rel intensity) 314 (M⁺, 33) 337 (MNa⁺, 17), 299 (M-Me⁺, 100).

3.1.13. 1,2,5-Trimethoxyanthraquinone (33).⁷⁶ To a stirring ice-cold solution of 33 (50 mg, 0.16 mmol) in CH₂Cl₂ (10 mL) was added BTI (75 mg, 0.17 mmol) as a solid, in one portion. After 2 min, the diene 7a (33 µL, 0.19 mmol) in solution in CH₂Cl₂ (200 µL) was added dropwise. The mixture was stirred at rt for 1 h, after which time it was diluted with CH₂Cl₂ (20 mL), washed with saturated aqueous NaHCO₃ (2×20 mL), 1M H₃PO₄ (20 mL), brine (20 mL), dried over Na₂SO₄, and evaporated at rt. The resulting brownish oil was purified by column chromatography, eluting with hexane/ Et_2O (1:1), to furnish 33 (21 mg, 48%) as a red solid: mp 186–188 °C; IR (KBr) 1663 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 3.88 (s, 3H), 4.03 (s, 3H), 4.05 (s, 3H), 6.49 (d, J = 10.3 Hz, 1H), 7.13 (d, J=7.4 Hz, 1H), 7.57 (dd, J=8.1, 8.1 Hz, 1H), 7.98 (dd, J=1.0, 8.4 Hz, 1H), 8.10 (d, J=10.3 Hz, 1H); ¹³C NMR (CDCl₃, 50.3 MHz) & 181.0, 178.7, 160.0, 157.1, 152.8, 140.9, 133.8, 129.8, 126.4, 122.5, 119.0, 118.1, 117.5, 111.6, 64.1, 62.7, 54.4; LSIMS m/z (rel intensity) 298 (M⁺, 21), 299 (MH⁺, 97), 321 (MH⁺, 100).

3.1.14. 2-Chloro-5-hydroxy-6-methoxymethylnaphthoquinone (36b). To a solution of i-Pr₂NH (184 µL, 1.3 mmol) in THF (1 mL) was added dropwise at -78 °C *n*-BuLi (576 µL, 1.44 mmol). After 40 min at this temperature, the mixture was allowed to warm up to rt for 10 min, and then cooled down again to -78 °C. To this solution of LDA was added dropwise methyl 2-methoxymethyl-3butenoate (**28b**, 200 mg, 1.25 mmol) in solution in THF (1 mL). After 40 min, TMSC1 (793 µL, 6.25 mmol) in solution in THF (1 mL) was added and the resulting mixture was stirred for 1 h. The THF solvent was then removed by evaporation and replaced with pentane. The mixture was filtered through Celite and evaporated to furnish a ca. 3:1 mixture of **23b** and **28b**, as estimated by ¹H NMR analysis. A solution of this mixture thus estimated to contain 114 mg of 23b (0.49 mmol) in toluene (2 mL) was added dropwise to a stirred solution of commercial 2,5-dichlorobenzoquinone (44 mg, 0.25 mmol) in toluene (1 mL). The reaction mixture was stirred at rt for 24 h, after which time the solvent was evaporated, the residue was diluted in CH₂Cl₂ and treated with silica gel for 6 h. After filtration and extensive trituration of the silica gel with CH2Cl2, evaporation gave a red solid, which was purified by column chromatography, eluting with light petroleum/Et₂O (4:1), to give **36b** (14.7 mg, 22%): IR (NaCl) 1668, 1634, 1584 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 3.53 (s, 3H), 5.36 (s, 2H), 7.18 (s, 1H), 7.40 (d, J=8.5 Hz, 1H), 7.72 (d, J=8.5 Hz, 1H), 12.22 (s, 1H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 188.2, 152.5, 152.3, 145.4, 135.6, 124.0, 122.3, 119.7, 119.2, 116.0, 95.1, 56.8; EIMS *m/z* (rel intensity) 268 (M⁺, 100), 237 (27); HMRS (EIMS) calcd for C₁₂H₉O₅Cl 268.0138, found 268.0140.

3.1.15. 2-Methoxy-1-(tripropylsilyloxy)-naphthalene (38). To a stirred solution of 2-methoxynaphthol 6a $(500 \text{ mg}, 2.87 \text{ mmol})^{42}$ in CH₂Cl₂ (30 mL) was added dropwise at 0 °C the triethylamine (0.5 mL, 3.37 mmol). After stirring for 30 min, Pr₃SiCl (609 mg, 3.16 mmol) was added dropwise at 0 °C. The mixture was stirred at rt for 100 min, after which time it was diluted with CH₂Cl₂ (20 mL), washed with 1M H₃PO₄ (30 mL), water (30 mL), dried over Na₂SO₄, and evaporated at rt to furnish pure 38 in quantitative yield (1 g): IR (NaCl) 3062, 2952, 2865, 1626 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.72 (m, 6H), 0.87 (m, 9H), 1.34 (m, 6H), 3.81 (s, 3H), 7.15 (d, J=8.1 Hz, 1H), 7. 23 (m, 1H), 7.34 (m, 2H), 7.63 (d, J = 8.1 Hz, 1H), 7.99 (dd, J=8.2, 1.1 Hz, 1H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 145.4, 139.0, 129.8, 128.8, 127.5, 125.3, 123.8, 121.9, 121.1, 114.5, 56.3, 18.5, 17.6, 16.8; EIMS m/z (rel intensity) 330 (M⁺, 41), 272 (100); HMRS (EIMS) calcd for C₂₀H₃₀O₂Si 330.2015, found 330.2012.

3.1.16. 2-Chloro-5-hydroxy-6-methoxy-3-tripropylsilanyl-[1,4]naphthoquinone (39). To a stirred ice-cooled solution of naphthoquinone 36a (40 mg, 0.17 mmol) in DMF (5 mL) was added triethylamine (47 µL, 0.34 mmol). After stirring for 30 min, Pr₃SiCl (74 µL, 0.34 mmol) was added dropwise at 0 °C. The mixture was stirred at rt for 90 min, after which time it was diluted with water (20 mL). The aqueous phase was extracted with ether $(3 \times 20 \text{ mL})$, and the combined organic layers were dried over Na₂SO₄, and evaporated at rt. The residue was purified by column chromatography, eluting with hexane/Et₂O (2:1), to afford **39** (13.3 mg, 20%): IR (NaCl) 3408, 2925, 2854, 1668, 1632 cm⁻¹; ¹H NMR (CDCl3, 300 MHz) δ 0.87 (m, 6H, CH₂-Pr), 1.04 (m, 9H, CH₃-Pr), 1.62 (m, 6H, CH₂-Pr), 4.00 (s, 3H, OCH₃), 7.08 (d, J=8.5 Hz, 1H, H-4), 7.75 (d, J=8.5 Hz, 1H, H-3), 12.43 (s, 1H, OH); ¹³C NMR (CDCl3, 75.5 MHz) δ 188.2, 176.1, 154.6, 152.4, 148.0, 144.9, 123.1, 121.9, 115.0, 114.5, 56.4, 29.8, 21.3, 14.3; EIMS m/z (rel intensity) 280 (M⁺, 100), 265 [(M-Pr₃)⁺, 65].

3.1.17. 2-Chloro-6-methoxy-5-triethylsilanyloxy-[1,4]-naphthoquinone (40). A solution of naphthoquinone **36a** (40 mg, 0.17 mmol), Ag₂O (158 mg, 0.26 mmol) and Et₃-SiCl (42.8 μ L, 0.26 mmol) in CHCl₃ (5 mL) was refluxed for 12 h. The mixture was filtered through Celite and evaporated at rt to afford quantitatively **40** (71 mg), which was used without any further purification: ¹H NMR (CDCl3, 300 MHz) δ 0.81 (m, 6H), 0.97 (m, 9H), 3.90 (s, 3H), 7.01 (s, 1H), 7.07 (d, *J*=8.7 Hz, 1H), 7.83 (d, *J*=8.7 Hz, 1H); ¹³C NMR (CDCl3, 75.5 MHz) δ 180.9, 175.5, 156.5, 145.4, 143.6, 136.7, 123.9, 122.1, 121.0, 113.1, 54.7, 5.7, 4.6.

3.1.18. 2-(4-Hydroxy-3-methoxynaphtalen-1-yl)-3methylbut-2-enal (42). 3-Benzyl-5-(2-hydroxyethyl)-4methylthiazolium chloride (41, 1.4 mg, 0.005 mmol) and Et₃N (4 μ L, 0.03 mmol) were successively added to a solution of **5b** (25 mg, 0.098 mmol) in absolute ethanol (2 mL). The reaction mixture was heated at 80 °C for 2.5 h, after which time ethanol was evaporated. The residue was then diluted with CH₂Cl₂ (10 mL), washed with saturated aqueous Na₂CO₃ (10 mL), brine (20 mL), dried over Na₂SO₄, and evaporated. The resulting crude oil was purified by column chromatography, eluting with light petroleum/Et₂O (1:1), to give 42 as a light red gum (23 mg, 90%): IR (NaCl) 3408, 2928, 1694, 1350 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 1.71 (s, 3H, CH₃), 2.47 (s, 3H, CH₃), 3.97 (s, 3H, OCH₃), 6.03 (s, 1H, H-3), 6.94 (s, 1H), 7.30 (d, J=8.3 Hz, 1H), 7.42 (m, 2H), 8.17 (d, J=7.6 Hz, 1H), 10.36 (s, 1H, CHO); ¹³C NMR (CDCl₃, 62.9 MHz) δ 190.7, 158.7, 140.8, 139.5, 137.1, 128.0, 125.8, 125.4, 124.8, 124.7, 124.3, 121.8, 115.0, 57.2, 25.3, 19.9; LSIMS m/z (rel intensity) 279 (MNa⁺, 28); 256 (M⁺, 100); HMRS (LSIMS) calcd for $C_{16}H_{16}O_3$ 256.1099, found 256.1101.

3.1.19. 5-(2-Methoxy-1-oxo-1,2-dihydro-naphthalen-2yl)-4-methyl-trimethylsilanyloxy-pent-3-enenitrile (43). To a stirred solution of 5b (150 mg, 0.59 mmol), KCN (3 mg, 0.08 mmol) and 18-crown-6 (8 mg, 0.05 mmol) in CH₂Cl₂ (6 mL) was added dropwise at 0 °C Me₃SiCN (94 µl, 0.71 mmol). The reaction mixture was stirred at 0 °C for 45 min, after which time it was evaporated and directly submitted to column chromatography, eluting with light petroleum/Et₂O (2:1), to give 43 as a pale yellow oil (77 mg, 37%): IR (NaCl) 2935, 2360, 1686 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 0.16 (s, 9H, TMS), 1.67 (s, 3H, β-CH₃), 1.79 (s, 3H, β-CH₃), 2.46 (s, 2H, γ-CH₂), 2.50 (s, 2H, γ-CH₂), 3.17 (s, 3H, OCH₃), 3.18 (s, 3H, OCH₃), 4.93 (d, *J*=8.5 Hz, 1H, CHCN), 4.99 (d, J=7.9 Hz, 1H, CHCN), 5.26 (d, J= 8.5 Hz, 1H, H- α), 5.32 (d, J = 7.3 Hz, 1H, H- α), 6.09 (d, J =10.1 Hz, 1H, H-4), 6.79 (d, J=10.1 Hz, 1H, H-3), 7.24 (d, J=7.6 Hz, 1H, H-5), 7.37 (t, J=7.6 Hz, 1H, H-7), 7.59 (t, J=7.6 Hz, 1H, H-6), 8.02 (d, J=7.6 Hz, 1H, H-8); ¹³C NMR (CDCl₃, 62.9 MHz) δ 200.0, 137.1, 136.9, 135.0, 135.0, 134.9, 134.9, 129.9, 129.3, 129.1, 128.3, 126.9, 126.8, 125.8, 82.3, 57.9, 53.4, 48.6, 48.3, 18.7, 18.5, -0.4; EIMS m/z (rel intensity) 355 (M⁺, 7), 173 (100); HMRS (EIMS) calcd for C₂₀H₂₅NO₃Si 355.1603, found 355.1601.

3.1.20. 9b-Hydroxy-3a-methoxy-2-methyl-3a,9b-dihydro-3*H*-cyclopenta[*a*]naphthalene-1-carbaldehyde (46)—treatment of enal 5b with tetra-*n*-butylammonium oxido- λ^3 -iodane (45). Tetrabutylammonium fluoride (270 µL in THF, 0.3 mmol) was added to a suspension of 1-hydroxy-1,2-benziodoxol-3(1H)-one (80 mg, 0.3 mmol) in THF (2 mL). To the resulting colorless solution was added dropwise at rt a solution of enal 5b (63 mg, 0.25 mmol) in THF (2 mL). The resulting mixture gradually became blue and then black. After 2 h, it was diluted with Et_2O (10 mL), washed with saturated aqueous NaHCO₃ (2×5 mL), 10% HCl (10 mL), brine (10 mL), dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography, eluting with light petroleum/ acetone (4:1), to give 46 (20 mg, 32%): IR (KBr) 3430, 2930, 1680, 1608, 753 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 2.19 (s, 3H, β-CH₃), 2.63 (d, J = 17.4 Hz, 1H, γ-CH₂), 3.12 (d, J=17.4 Hz, 1H, γ-CH₂), 3.17 (s, 3H, OCH₃), 3.48 (s, 1H, OH), 5.73 (d, J=9.8 Hz, 1H, H-3), 6.73 (d, J=9.8 Hz, 1H, H-4), 7.25-7.28 (m, 1H), 7.32-7.36 (m, 1H), 7.95 (d, J=7.6 Hz, 1H), 9.51 (s, 1H, CHO); ¹³C NMR (CDCl₃, 62.9 MHz) & 189.4, 160.9, 136.6, 136.3, 132.7, 130.4, 128.7, 128.1, 127.3, 127.1, 126.9, 80.9, 80.2, 52.3, 49.8, 16.4; EIMS m/z (rel intensity) 256 (M⁺, 55), 224 (100), 195 (73); HMRS (EIMS) calcd for C₁₆H₁₆O₃ 256.1099, found 256.1103.

3.1.21. Treatment of epoxide 48 with zinc. A suspension of **48** (17 mg, 0.06 mmol), zinc powder (20 mg, 0.31 mmol), ammonium chloride (10 mg, 0.18 mmol) in a 4:1 mixture of EtOH/H₂O (7 mL) was heated at 80 °C for 20 min, after which time it was filtered. The filtration pellet was rinsed with Et₂O, and the filtrates were washed with brine (10 mL), dried over Na₂SO₄ and evaporated at rt. The residue was purified by PLC, eluting with light petroleum/ Et₂O (2:3), to afford **46** (17 mg, 14%).

3.1.22. Treatment of epoxide 48 with SmI₂. To a slurry suspension of Sm powder (84 mg, 0.55 mmol) and molecular sieves 4 Å in THF (4 mL) was added at rt diiodomethane (30 µL, 0.37 mmol). The resulting olive-green slurry was stirred for 2 h, after which time the deep blue solution of SmI_2 thus formed was cooled to -90 °C, and treated with a solution of 48 (100 mg, 0.37 mmol) in THF/MeOH (4:1, 2.5 mL). The resulting brown mixture was stirred for 10 min at -90 °C, quenched at this temperature with H₂O and then warmed to rt. The mixture was then further diluted in H₂O and extracted four times with Et_2O (4×10 mL). The combined organic layers were washed with saturated aqueous sodium thiosulfate (5 mL) and H₂O (2×5 mL), dried over Na₂SO₄, and evaporated to give a residue which was purified by column chromatography, eluting with light petroleum/Et₂O (1:1), to furnish **46** (13 mg, 14%).

3.1.23. Epoxide 48. To a suspension of 5b (120 mg, 0.47 mmol) and Na₂CO₃ (49.8 mg, 0.47 mmol) in a mixture of EtOH/H₂O (4:1, 7 mL) was added dropwise at 0 °C a 30% aqueous solution of H₂O₂ (400 μ L). After the addition was complete, the ice-bath was removed and the mixture was stirred at rt for 3 h. The mixture was then evaporated, and the residue was diluted with CH₂Cl₂ (10 mL), washed with H₂O (10 mL), brine (10 mL), dried over Na₂SO₄, and evaporated at rt. The resulting oil was purified by column chromatography, eluting with light petroleum/Et₂O (2:3), to afford the epoxide 48 as a 1:1 mixture of diastereosomers (85 mg, 67%, light yellow oil). These isomers were separated by PLC, eluting with light petroleum/acetone (3:1), to furnish 48a as the fastest moving isomer and 48b.

48a: ¹H NMR (CDCl₃, 250 MHz) δ 1.42 (s, 3H, γ-CH₃), 2.10 (d, J=14.6 Hz, 1H), 2.31 (d, J=14.6 Hz, 1H), 3.18 (s, 3H, OCH₃), 6.13 (d, J=10.0 Hz, 1H, H-3), 6.72 (d, J= 10.0 Hz, 1H, H-4), 7.24 (d, J=7.9 Hz, 1H), 7.39 (m, 1H), 7.60 (t, J=1.5, 7.8 Hz, 1H), 7.99 (d, J=8.5 Hz, 1H), 9.28 (d, J=5.2 Hz, 1H, CHO); EIMS m/z (rel intensity) 272 (M⁺, 15), 157 (100). **48b**: ¹H NMR (CDCl₃, 250 MHz) δ 1.48 (s, 3H, γ-CH₃), 1.88 (d, J=14.6 Hz, 1H), 2.20 (d, J= 14.6 Hz, 1H), 3.18 (s, 3H, OCH₃), 6.18 (d, J=10.0 Hz, 1H, H-3), 6.82 (d, J=10.0 Hz, 1H, H-4), 7.24 (d, J=6.1 Hz, 1H), 7.39 (m, 1H), 7.60 (t, J=1.5, 7.8 Hz, 1H), 8.03 (d, J= 8.5 Hz, 1H), 9.37 (d, J=4.9 Hz, 1H, CHO); EIMS m/z (rel intensity) 272 (M⁺, 15), 157 (100).

3.1.24. β-Hydroxyaldehyde 50 and β-epoxyaldehyde 51.

NaBH₄ (38 mg, 1.00 mmol) was added portionwise to a solution of diphenyldiselenide (160 mg, 0.51 mmol) in absolute EtOH (2 mL). Once the gas evolution ceased, the yellow solution was cooled down to 0 °C in an ice-water bath, treated with AcOH (9.8 µL), and then added at rt to a solution of the epoxide 48 (90 mg, 0.33 mmol) in EtOH (2 mL). The reaction mixture turned to blue and was stirred for 2.5 h, after which time it was diluted with EtOAc and bubbled with oxygen gas for several minutes to convert the remaining selenium reagent to (PhSe)₂. The organic layer was washed with brine (10 mL), dried over Na₂SO₄, and evaporated at rt. The resulting crude oil was purified by column chromatography, eluting with light petroleum/ acetone (3:1), to furnish 50 (42 mg, 46%) and 51 (32 mg, 35%). **50**: IR (KBr) 3447, 2933, 1716 cm⁻¹; ¹H NMR $(\text{CDCl}_3, 250 \text{ MHz}) \delta 1.39 \text{ (s, 3H, } \beta\text{-CH}_3), 2.40 \text{ (d, } J =$ 14.9 Hz, 1H, γ -CH₂), 2.54 (d, J=2.1 Hz, 1H, H- α), 2.58 (d, J=15.5 Hz, 1H, γ-CH₂), 3.08 (s, 3H, OCH3), 3.88 (s, 1H, β -OH), 4.08 (s, 1H, 1-OH), 5.75 (d, J=9.8 Hz, 1H, H-3), 6.73 (d, J=9.8 Hz, 1H, H-4), 7.16 (d, J=7.1 Hz, 1H), 7.26-7.30 (m, 2H), 7.70 (d, J=7.5 Hz, 1H), 9.90 (d, J=2.5 Hz, 1H, CHO); ¹³C NMR (CDCl₃, 62.9 MHz) δ 203.3, 137.7, 131.2, 129.9, 129.1, 128.6, 128.2, 127.8, 125.1, 82.4, 80.3, 78.1, 66.3, 54.8, 52.0, 28.2; LSIMS m/z (rel intensity) 297 (MNa⁺, 100); HMRS (LSIMS) calcd for $C_{16}H_{18}O_4Na$ 297.1103, found 297.1106. 51: mp 129.0-130 °C; IR (KBr) 3408, 2924, 1716 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 1.33 (s, 3H, β -CH₃), 2.24 (d, J = 14.3 Hz, 1H, γ -CH₂), 2.47 (d, J = 14.3 Hz, 1H, γ -CH₂), 3.03 (s, 3H, OCH3), 3.35 (s, 1H, 1-OH), 5.61 (d, J = 10.0 Hz, 1H, H-3), 6.93 (d, J =9.8 Hz, 1H, H-4), 7.25 (m, 1H), 7.34 (m, 2H), 7.80 (d, J= 7.0 Hz, 1H), 8.81 (s, 1H, CHO); ^{13}C NMR (CDCl₃, 50.3 MHz) δ 193.9, 134.6, 133.1, 131.4, 130.0, 128.9, 127.6, 127.5, 125.4, 84.9, 77.5, 77.0, 72.3, 51.7, 46.1, 16.1; EIMS m/z (rel intensity) 272 (M⁺, 5), 174 (100); HMRS (EIMS) calcd for C₁₆H₁₆O₄ 272.1048, found 272.1052.

Acknowledgements

The authors thank the French Ministry of Research for G.-J.F.'s postdoctoral fellowship and for N.L.'s graduate research assistantship (N.L. was awarded with this assistantship through the French Integrative Graduate Education and Research Traineeship (IGERT) program), the Centre National de la Recherche Scientifique and the Conseil Régional d'Aquitaine for M.O.'s graduate research assistantship (Bourse Docteur Ingénieur N°8006677). The support of the Centre National de la Recherche Scientifique through the French IGERT program and the Robert A. Welch Foundation (Grant D-1365) are gratefully acknowledged, as well as Simafex (www.simafex.com) for the gifts of several batches of BTI reagent.

References and notes

- 1. Krohn, K.; Rohr, J. Top. Curr. Chem. 1997, 188, 127-195.
- 2. Rohr, J.; Thiericke, R. Nat. Prod. Rep. 1992, 9, 103-137.
- 3. Guingant, A.; Barreto, M. M. Tetrahedron Lett. 1987, 28, 3107–3110.
- Larsen, D. S.; O'Shea, M. D. J. Chem. Soc. Perkin Trans 1 1995, 1019–1028.
- Larsen, D. S.; O'Shea, M. D.; Brooker, S. Chem. Comm. 1996, 203–204.
- 6. Krohn, K.; Khanbabaee, K. Liebigs Ann. Chem. 1994, 1109–1112.
- Krohn, K.; Khanbabaee, K.; Micheel, J. Liebigs Ann. 1995, 1529–1537.
- 8. Carreño, C. M.; Urbano, A.; Di Vitta, C. Chem. Comm. 1999, 817–818.
- Kim, K.; Boyd, V. A.; Sobti, A.; Sulikowski, G. A. Isr. J. Chem. 1997, 37, 3–22.
- Matsumoto, T.; Sohma, T.; Yamaguchi, H.; Kurata, S.; Suzuki, K. *Tetrahedron* **1995**, *51*, 7347–7360.
- Boyd, V. A.; Sulikowski, G. A. J. Am. Chem. Soc. 1995, 117, 8472–8473.
- Landells, J. S.; Larsen, D. S.; Simpson, J. *Tetrahedron Lett.* 2003, 44, 5193–5196.
- 13. Matsuo, G.; Miki, Y.; Nakata, M.; Matsumura, S.; Toshima, K. *Chem. Commun.* **1996**, 225–226.
- Brown, P. M.; Thomson, R. H. J. Chem. Soc. Perkin Trans. 1 1976, 1976, 997–1000.
- 15. Mitchell, A. S.; Russell, R. A. Tetrahedron 1997, 53, 4387-4410.
- Mal, D.; Roy, H. N.; Hazra, N. K.; Adhikari, S. *Tetrahedron* 1997, 53, 2177–2184.
- 17. Katsuura, K.; Snieckus, V. Can J. Chem. 1987, 65, 124-130.
- 18. Katsuura, K.; Snieckus, V. Tetrahedron Lett. 1985, 26, 9-12.
- Uemura, M.; Nishikawa, N.; Take, K.; Ohnishi, M.; Hirotsu, K.; Higushi, T.; Hayashi, Y. J. Org. Chem. 1983, 48, 2349–2356.
- Gordon, D. M.; Danishefsky, S. J. J. Org. Chem. 1992, 57, 7052–7055.
- Matsumoto, T.; Sohma, T.; Yamaguchi, H.; Kurata, S.; Suzuki, K. *Synlett* **1995**, 263–266.
- 22. Chuang, C.-P.; Wang, S.-V. Tetrahedron Lett. 1994, 35, 4365–4366.
- 23. Kalogerakis, A.; Groth, U. Org. Lett. 2003, 5, 843-844.
- Yamaguchi, M.; Okuma, T.; Horiguchi, A.; Ikeura, C.; Minami, T. J. Org. Chem. 1992, 57, 1647–1649.
- 25. Kraus, G. A.; Wan, Z. Tetrahedron Lett. 1997, 38, 6509-6512.
- Sezaki, M.; Hara, T.; Ayukawa, S.; Takeuchi, T.; Okami, Y.; Hamada, M.; Nagatsu, T.; Umezawa, H. J. Antibiot. 1968, 21, 91–97.
- Sezaki, M.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. *Tetrahedron* **1970**, *26*, 5171–5190.
- Okazaki, T.; Kitahara, T.; Okami, Y. J. Antibiot. 1975, 28, 176–184.

- Nagatsu, T.; Ayukawa, S.; Umezawa, K. J. Antibiot. 1968, 21, 354–357.
- Ayukawa, S.; Takeuchi, T.; Sezaki, M.; Hara, T.; Umezawa, K.; Nagatsu, T. J. Antibiot. 1968, 21, 350–353.
- 31. Hayaishi, O.; Okuno, S.; Fujisawa, H. Biochem. Biophys. Res. Commun. **1970**, *39*, 643–650.
- 32. Nozaki, M.; Okuno, S.; Fujisawa, H. Biochem. Biophys. Res. Commun. 1971, 44, 1109–1116.
- 33. Tanaka, N.; Okabe, T.; Tanaka, N.; Take, K.; Inouye, Y.; Nakamura, S.; Nakashima, H.; Yamamoto, Y.; Jpn J. Cancer Res. 1986, 77, 324–326.
- 34. Henkel, T.; Zeeck, A. J. Antibiot. 1990, 43, 830-837.
- Sekisawa, R.; Iinuma, H.; Naganawa, H.; Hamada, S.; Takeuchi, T.; Yamaizumi, J.; Umezawa, K. *J. Antibiot.* **1996**, *49*, 487–490.
- 36. Nicolas, T. E.; Franck, R. W. J. Org. Chem. 1995, 60, 6904–6911.
- Matsumoto, T.; Yamaguchi, H.; Hamura, T.; Tanabe, M.; Kuriyama, Y.; Suzuki, K. *Tetrahedron Lett.* 2000, 41, 8383–8387.
- Matsumoto, T.; Yamaguchi, H.; Tanabe, M.; Yasui, Y.; Suzuki, K. *Tetrahedron Lett.* 2000, *41*, 8393–8396.
- Yamaguchi, H.; Konegawa, T.; Tanabe, M.; Nakamura, T.; Matsumoto, T.; Suzuki, K. *Tetrahedron Lett.* 2000, 41, 8389–8392.
- 40. Krohn, K.; Frese, P.; Flörke, U. Chem. Eur. J. 2000, 6, 3887–3896.
- 41. Quideau, S.; Looney, M. A.; Pouységu, L. Org. Lett. 1999, 1, 1651–1654.
- Quideau, S.; Pouységu, L.; Oxoby, M.; Looney, M. *Tetrahedron* 2001, 57, 319–329.
- 43. Colvin, E. W.; Thom, I. G. Tetrahedron 1986, 42, 3137-3146.
- Millefiori, S.; Gulino, A.; Casarin, M. J. Chim. Phys. 1990, 87, 317–330.
- 45. Chen, C.; Liu, Y.-Z.; Shia, K.-S.; Tseng, H.-Y. *Bioorg. Med. Chem.* **2002**, *12*, 2729–2732.
- Verrax, J.; Cadrobbi, J.; Delvaux, M.; Jamison, J. M.; Gilloteaux, J.; Summers, J. L.; Taper, H. S.; Calderon, P. B. *Eur. J. Med. Chem.* 2003, *38*, 451–457.
- 47. Fieser, L. F. J. Biol. Chem. 1940, 133, 391-396.
- Narayanan, S.; Murthy, K.V.V.S.B.S.R.; Reddy, K. M.; Premchander, N. Appl. Catal. 2002, 228, 161–165.
- Herrmann, W. A.; Haider, J. J.; Fischer, R. W. J. Mol. Catal. 1999, 138, 115–121.
- Song, R.; Sorokin, A.; Bernadou, J.; Meunier, B. J. Org. Chem 1997, 62, 673–678.
- Adam, W.; Herrmann, W. A.; Lin, J.; Saha-Möller, C. R.; Fischer, R. W.; Correia, J. D. G. *Angew. Chem., Int. Ed. Engl.* 1994, *33*, 2475–2477.
- 52. Akai, S.; Kita, Y. Org. Prep. Proc. Int. 1998, 30, 605-629.
- 53. Kato, N.; Sugaya, T.; Mimura, T.; Ikuta, M.; Kato, S.; Kuge, Y.; Tomioka, S.; Kasai, M. *Synthesis* **1997**, 625–627.
- 54. Barret, R.; Daudon, M. Tetrahedron Lett. 1990, 31, 4871–4872.
- 55. Barret, R.; Daudon, M. Synth. Commun. 1990, 20, 2907-2912.
- Saitz, B. C.; Valderrama, J. A.; Tapia, R.; Farina, F.; Paredes, C. Synth. Commun. 1992, 22, 955–960.
- 57. Bergeron, D.; Brassard, P. Heterocycles 1992, 34, 1835-1845.

- Pelter, A.; Elgendy, S. M. A. J. Chem. Soc. Perkin Trans. 1 1993, 1891–1896.
- Bodajla, M.; Jones, G. R.; Ramsden, C. A. *Tetrahedron Lett.* 1997, 38, 2573–2576.
- 60. Mitchell, A. S.; Russell, R. A. *Tetrahedron Lett.* **1993**, *34*, 545–548.
- Quideau, S.; Looney, M. A.; Pouységu, L.; Ham, S.; Birney, D. M. *Tetrahedron Lett.* **1999**, *40*, 615–618.
- 62. Savard, J.; Brassard, P. Tetrahedron 1984, 40, 3455-3464.
- Bauman, J. G.; Hawley, R. C.; Rapoport, H. J. Org. Chem. 1985, 50, 1569–1573.
- 64. Heinzman, S. W.; Grunwell, J. R. *Tetrahedron Lett.* **1980**, *21*, 4305–4308.
- Jung, M. E.; Hagenah, J. A. J. Org. Chem. 1983, 48, 5359–5361.
- 66. Savard, J.; Brassard, P. Tetrahedron Lett. 1979, 4911–4914.
- Palm, R.; Ohse, H.; Cherdron, H. Angew. Chem., Int. Ed. Engl. 1966, 5, 994–1000.
- Lee, S.-W.; Kuo, S.-C.; Chen, Z.-T.; Liu, Z.-S. J. Nat. Prod. 1994, 57, 1313–1315.
- Kita, Y.; Takada, T.; Tohma, H. Pure Appl. Chem. 1996, 68, 627–630.
- Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y. J. Org. Chem. **1998**, 63, 7698–7706.
- Braun, N. A.; Ousmer, M.; Bray, J. D.; Bouchu, D.; Peters, K.; Peters, E.-M.; Ciufolini, M. A. J. Org. Chem. 2000, 65, 4397–4408.
- 72. Kita, Y.; Gyoten, M.; Ohtsubo, M.; Tohma, H.; Takada, T. *Chem. Commun.* **1996**, 1481–1482.
- Moriarty, R. M.; Prakash, O.; Duncan, M. P.; Vaid, R. K.; Musallam, H. A. J. Org. Chem. 1987, 52, 150–153.
- Zhdankin, V. V.; Mullikin, M.; Tykwinski, R. R.; Berglund, B.; Caple, R.; Zefirov, N. S.; Koz'min, A. S. J. Org. Chem. 1989, 54, 2605–2608.
- Zhdankin, V. V.; Tykwinski, R. R.; Berglund, B.; Mullikin, M.; Caple, R.; Zefirov, N. S.; Koz'min, A. S. J. Org. Chem. 1989, 54, 2609–2612.
- 76. Fischer, O.; Ziegler, H. J. Prakt. Chem. 1912, 86, 297-305.
- 77. Kita, Y.; Yakura, T.; Tohma, H.; Kikuchi, K.; Tamura, Y. *Tetrahedron Lett.* **1989**, *30*, 1119–1120.
- McKillop, A.; McLauren, L.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 1994, 2047–2048.
- Hachisu, Y.; Bode, J. W.; Suzuki, K. J. Am. Chem. Soc. 2003, 125, 8432–8433.
- 80. Stetter, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 639-712.
- 81. Miller, B.; Lin, W.-O. J. Org. Chem. 1978, 43, 4441-4446.
- 82. Miller, B.; Saidi, M. R. J. Am. Chem. Soc. 1976, 2227-2238.
- Takuwa, A.; Naruta, Y.; Soga, O.; Maruyama, K. J. Org. Chem. 1984, 49, 1857–1864.
- 84. Corey, E. J.; Schimdt, G. Tetrahedron Lett. 1980, 21, 731-734.
- 85. Li, J.; Lan, J.; Liu, Z.; Li, Y. J. Nat. Prod. 1998, 61, 92-95.
- Ochiai, M.; Nakanishi, A.; Suefuji, T. Org. Lett. 2000, 2, 2923–2926.
- 87. Ochiai, M. Top. Curr. Chem. 2003, 224, 5-68.
- 88. Singh, V.; Porichu, M. Tetrahedron 1996, 52, 7087-7126.
- Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 51, 2596–2599.
- Miyashita, M.; Suzuki, T.; Hoshino, M.; Yoshikoshi, A. *Tetrahedron* **1997**, *33*, 12469–12486.